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Figure 1: An example of particle data from the MC3 dark matter simulation. The images show the comparison between full resolution data

and statistically-based level-of-detail data samples generated via in-situ sampling.

Abstract

We describe a simulation-time random sampling of a large-scale particle simulation, the RoadRunner Universe

MC3 cosmological simulation, for interactive post-analysis and visualization. Simulation data generation rates

will continue to be far greater than storage bandwidth rates by many orders of magnitude. This implies that only

a very small fraction of data generated by a simulation can ever be stored and subsequently post-analyzed. The

limiting factors in this situation are similar to the problem in many population surveys: there aren’t enough human

resources to query a large population. To cope with the lack of resources, statistical sampling techniques are used

to create a representative data set of a large population. Following this analogy, we propose to store a simulation-

time random sampling of the particle data for post-analysis, with level-of-detail organization, to cope with the

bottlenecks. A sample is stored directly from the simulation in a level-of-detail format for post-visualization and

analysis, which amortizes the cost of post-processing and reduces workflow time. Additionally by sampling during

the simulation, we are able to analyze the entire particle population to record full population statistics and quantify

sample error.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— H.3.m

[Information Storage and Retrieval]: Miscellaneous—

1. Introduction

Modern scientific discovery greatly depends upon com-

puter modeling and interactive exploratory visualization has

proved to be essential for scientific discovery and analy-

sis [AHP∗10]. For scientific simulations, current leadership

supercomputing is in the petascale range (1015 flops). It is

expected in the next decade, supercomputers will progress

into the exascale range (1018 flops). The amount of data gen-

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.



Woodring et al. / In-situ Sampling of a Large-Scale Particle Simulation

erated through simulations on these machines is a significant

concern to the scientific simulation community, as the gener-

ated sizes will surpass the capability to interactively explore

and analyze the data [JR07].

Primarily, this is because storage read and write band-

width on leadership supercomputing has not kept pace with

computational speed [AHL∗10], therefore it is not possible

to store all generated data for post-analysis. This problem

is generally recognized as data intensive computing or data

intensive supercomputing (DISC). For example, the Road-

Runner Universe MC3 [HPL∗09] is a large N-body cosmol-

ogy simulation of dark matter physics. An MC3 time step of

40003 (64 billion) particles with 36 bytes per particle takes

2.3 TB per time slice. A Panasas parallel filesystem [pan]

connected to Los Alamos National Laboratory (LANL) sim-

ulation supercomputers can operate at 10 GB/s. At an op-

timistic peak, it takes 4 minutes to move the 40003 parti-

cle data to or from storage in parallel, which takes a large

hardware infrastructure investment for the bandwidth. Un-

der operating conditions, it can take longer than 4 minutes to

write the data under heavy load. Very few time steps, com-

pared to the entire data generated over time, are written to

disk due to the I/O to compute imbalance and storage size

limitations [JR07, SBH∗10].

The contribution of this paper is a study of an in-situ (anal-

ysis or visualization as part of the simulation) statistical sam-

pling method for the MC3 simulation, which stores level-of-

detail sample data for later interactive post-analysis and vi-

sualization, shown in Figure 2. Our first goal is to circumvent

the storage bottlenecks which hinder simulations from stor-

ing data for post-analysis. We improve performance by ex-

plicitly reducing the amount of stored data per time slice via

in-situ analysis and sampling. Our second goal is to provide

support for interactive scientific analysis and visualization

by providing efficient and accurate “raw sample data.” The

stored sample data can be used directly in scientific anal-

ysis and we quantify sample accuracy through measuring

the statistics of the original data in-situ compared to sam-

ple data. Furthermore, we directly encode sample data into a

level-of-detail format to amortize the cost of post-processing

and allowing for immediate interactive visualization.

particle

simulation
storage analysis and

visualization

random sampling

and LOD encoding

streaming level-

of-detail samples

integrated

approximation error

Figure 2: The end-to-end pipeline from data generation to ex-

ploratory post-analysis of large-scale particle data.

2. Related Work

Simulations are limited by storage bandwidth and capacity

and can only store a small fraction of data compared to the

entirety of the generated data (estimated to be under 10%)

[AHL∗10, JR07, SBH∗10]. The standard methods to cope

with the lack of I/O bandwidth at simulation run-time are to

store very few time steps, drop data dimensions (variables),

drop precision (converting doubles to floats), and/or use in-

situ visualization [MFMG10, TCM10, TYR∗06, YWG∗10].

When performing in-situ visualization, there is a trade-off of

what data to save for later analysis and what operations can

be performed afterward [TCM10]. We use in-situ analysis

to reduce the storage bandwidth and store raw data to pro-

vide exploratory visualization (most analysis operations) in

post-analysis.

Other techniques have reduced data sizes in post-

processing through compression and quantization [BR09,

CMNR07,EGM05,LI06,PF01,WGLS05]. We introduce one

more method for reducing the size of data for scientific visu-

alization via statistical sampling [Coc77,Loh10,Vit87]. Ran-

dom sampling of particles allows us to spread the informa-

tion loss [CJ10] across spatial dimensions. The benefit of

sampling at simulation-time is that we are able to record the

approximation error [LHJ03,WGS07] (how accurately sam-

ple data represents the original data). With this information,

we visually highlight the particle samples with high approx-

imation error [JS03, PKRJ10].

Standard practice in large-scale visualization is utilization

of massively parallel visualization methods [CPA∗10]. Al-

ternatively, there are methods to post-process data to sup-

port interactive visualization via streaming, level-of-detail

(LOD), and prioritization [AWD∗09, CMNR07, FSW09,

HE03, LHJ99, PF01, WGLS05]. LOD visualization is a use-

ful technique to allow large data to scale under the run-

time bottlenecks in storage, networks, and displays [Dee98].

Therefore, the sample data we acquire is stored in an LOD

structure that is read by a multi-resolution visualization sys-

tem [AWD∗09].

Though, the practice of post-processing [CMNR07,

EGM05, FSW09, HE03, PF01, Vit87, WGLS05] for interac-

tive visualization will not scale due to the storage bottle-

neck. We believe that post-processing is already inacces-

sible to scientists and the scientific workflow. The authors

of [FSW09] cite that it only took 5 hours to process their data

for visualization but that is 5 hours of scientist time. Addi-

tionally, only a very small amount of data can be stored com-

pared to the total amount of generated data. Post-processing

cannot recover the lost data that is never stored. Therefore,

we encode the original data directly from the simulation into

an LOD format, amortizing the cost of LOD encoding, and

removing a step in the workflow by eliminating one read and

write of the data.

3. Stratified Random Sampling of Particle Data

The high-level overview of the pipeline from beginning to

end is encapsulated in Figure 2. In the first step, we generate

samples of MC3 simulation data per time slice and store it
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directly into a level-of-detail (LOD) format. In the second

step, the cosmologists are able to analyze the LOD sample

data in a multi-resolution visualization tool [AWD∗09]. In

this section, we describe the general algorithm for creating a

sample of particle data. In Section 4, we describe how to in-

tegrate the LOD storage mechanism with the sampling algo-

rithm. In Sections 5, 6, and 7, we describe the visualization

and analysis of the simulation with sample data. Section 8

describes the performance characteristics of our method and

we conclude with Section 9.

We generate an in-situ random sample from the MC3 par-

ticle data during simulation by sampling from spatially con-

tiguous blocks of particles. Each block or stratum has an

equal number of samples that are allocated proportional to

the number of particles in a block. This sampling strategy is

a self-weighting stratified random sampling (which we ab-

breviate to StRS, since SRS refers to simple random sam-

pling) [Coc77, Loh10]: each stratum has the same popula-

tion size, the number of random sample points taken from

each stratum is proportional, and the inclusion probability

of every particle in the final sample is equal.

There are several reasons that we utilize StRS for parti-

cle sampling: From a statistical standpoint, stratified random

sampling helps to acquire a good sample [Coc77, Loh10].

The estimator for the mean is unbiased and has a lower vari-

ance than pure random sampling. From a systems perspec-

tive, most simulations run where the data is simulated in a

spatially contiguous region per processing element. There-

fore, the data is naturally separated into spatial strata. In the

MC3 cosmological simulation, it simulates the dark matter

particles in this manner. Additionally by separating the par-

ticle data into strata for sampling, we can easily modify the

sampling to generate blocked particle data for a streaming

level-of-detail (LOD) visualization system.

3.1. Implementing StRS with Median Value kd-tree

Sorting

We assume that the particle simulation is pre-partitioned per

processor into large spatial blocks, as is the case with the

MC3 simulation. To acquire a sample size of s from N parti-

cles, we allocate a proportional number of samples per pro-

cessor block. Assuming there are are ni particles on proces-

sor p, block ni is allocated ni · s/N random samples. The

complete sample is the union of all of the random samples

taken from every processor.

We utilize a median-split kd-tree per processor to recur-

sively divide the particle data into smaller sampling strata.

The kd-tree sorts the particle data by spatial axes to divide

the data by the median value per axis into equal population

partitions (strata). The dividing the space into many strata

ensures a more even spread of random samples across space;

it is somewhat analogous to signal anti-aliasing by putting

more samples in high frequency areas.

Our StRS implementation takes the same amount of

time as constructing a parallel kd-tree: O((N/p) log(N/p)),
where N is the total number of particles and p is the num-

ber of processors. Assuming that simulation particle data is

stored in a linear array in memory and the array can be sorted

(such as with MC3, the particle order does not matter), the

kd-tree can be constructed in place with no extra memory,

using median sort (STL nth_element). In other simulations

that do not allow reordering of the particle array, we can

store an array of indices to restore the previous order of the

data after kd-tree sorting or copy the particle data if there is

enough memory.

Figure 3 graphically shows how particle data on a pro-

cessor is sorted into kd-tree leaves (spatial strata) and one

random sample is taken per stratum. Given a spatial block of

particles per processor, we recusively split the data per axis,

by median axis value, to create a spatial decomposition of

the data. This sorts the data into spatial bins with an equal

number of particles per bin. At the leaf nodes of the kd-tree,

one random sample is taken per leaf or stratum. The samples

in aggregate across all of the leaves and all of the processors

is the stratified random sample. A more detailed account of

the algorithm with psuedo-code can be found in the supple-

mental material.

1 2 3 4

5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 4 6 7

1 4 6 7

1 2 3 4 5 6 7 8

Figure 3: The left tree shows 1D particle data being sorted into a

kd-tree. The right tree shows the generation of a four particle ran-

dom sample of the data. One random sample (red numbers) is taken

per stratum (leaf nodes) and joined into one aggregate sample.

4. In-situ Sampling with Level-of-Detail Construction

We extend the kd-tree stratified random sampling (StRS)

algorithm to directly generate level-of-detail (LOD) output

data. The sampling and LOD generation is performed such

that the sampling and simulation storage methods are inte-

grated into one algorithm. Therefore, the total time is still

O((N/p) log(N/p)).

The output storage format is similar to other tree based

LOD structures, with spatial blocks of sample particles laid

out linearly on storage [AWD∗09, CMNR07, FSW09, HE03,

PF01,WGLS05]. In each level of the hierarchy, we store spa-

tially contiguous blocks of particles, each of which represent

a StRS of a spatial region of the simulation. Each block in

the LOD hierarchy has a number of particles equal to the

sample size s and the number of blocks per level is 2v where

v is the level (v ≥ 0). For simplicity, we assume the number

of processors are a power of 2 and the sample size is a power

of 2.
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Figure 4 shows a diagram representation for creating the

LOD hierarchy per processor with StRS. An LOD block in

the hierarchy represents a stratified random sample of all

of the particles in a spatial region for a particular level-of-

detail. Samples from higher resolution LOD blocks are prop-

agated up the hierarchy to lower resolution LOD blocks. We

ensure that each strata, in a lower resolution LOD block, is

only sampled once (ensuring it still is a StRS) by taking one

random sample for every k particles, where k represents the

number of high resolution strata merged together to create a

low resolution block.

Figure 5 shows the completion (reduction) of the LOD

hierarchy, in parallel, from per processor samples. To com-

plete the LOD hierarchy, the LOD blocks created per pro-

cessor are random sampled by using the same merging crite-

ria as before. A more detailed account of the algorithm with

psuedo-code can be found in the supplemental material.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 6 7 10 12 13 16

1 4 6 7
10 12

13 16

4   6

10 16

Figure 4: The creation of a two-level LOD hierarchy with sample

size of four per block (black nodes at top), for 1D particle data on

one processor. At the bottom of the kd-tree are the finest grain strata

and the red numbers are the random samples for the bottom of the

LOD hierarchy. The green numbers are samples propagated to a

lower resolution level (one random sample per k samples, this case

2). We ensure that the lowest resolution sample (top of the tree) only

has one sample per stratum (color coded nodes and numbers).
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Figure 5: Completion (reduction) of an LOD hierarchy with sam-

ple size of four per block, for 1D particle data across four pro-

cessors. The green numbers are the random samples propagated to

lower resolution levels (one random sample per k samples, this case

2).

4.1. LOD Storage Size

Selected levels in the LOD hierarchy are written to storage.

In our implementation, we duplicate particles occurring in

each block at different resolutions, i.e., if particle A exists in

n levels of the hierarchy it will be replicated n times. In Sec-

tion 4.1.1, we provide the rationale for particle duplication

in the LOD storage. Given our storage implementation, the

number of particles stored per LOD level is 2v · s where v is

a level in the LOD hierarchy (v ≥ 0) and s is the sample size

(1 ≤ s ≤ N/2). Given V (V ⊂ Natural), a set of LOD levels

to store, the total number of particles written to storage will

be ∑v∈V 2v · s. This sum will be less than or equal to the total

number of particles N, assuming that ∀v ∈ V : 2v · s ≤ N/2

(the highest resolution LOD level is half the original data).

This is because the highest possible resolution of a level,

which is not the full resolution data, is at most one random

sample of every two particles. The next possible highest res-

olution data will be 1/4 of the original data, the next will be

1/8, etc. (lower resolution levels are at a maximum a N/2

sample size). Given this geometric series and Equation 1,

the LOD tree will at most be N of the original data, where

degree = 2 (the kd-tree degree). This is because the size of

the data is N/(degree−1) = N/(2−1) = N/1 = N.

depth

∑
k=1

N

degreek
= N

degreedepth −1

degreedepth(degree−1)

∞

∑
k=1

N

degreek
=

N

degree−1
(1)

N or 2N (adding the full resolution data per time slice)

is too large for our use case because of storage bandwidth

limitations, unless we are only concerned with amortizing

the cost of building the LOD structure and removing pre-

processing time. We are able to scale the size of the stored

data and significantly reduce the amount of written data to fit

within the storage bandwidth. We reduce the size by storing

only a few selected levels of the LOD hierarchy, limiting the

depth of LOD hierarchy, and/or not storing the full resolution

data.

For example if we store every third level in the kd-tree,

starting with the level that is 1/8 of the data, at most the

stored data will be N/7 of the original data set. Every level

will be 1/8 of the previous level as this follows from the

construction algorithm if every third level is stored. Thus,

N/8 = N/degree, degree = 8 and N/(degree−1) = N/(8−
1) = N/7. In another example, if we only store data starting

from root (zeroth) and third levels of the kd-tree, the data

size will be 20 ∗ s+23 ∗ s = 9∗ s, where s is the sample size,

which can be significantly less than N depending on the size

of s.

4.1.1. Particle Duplication Discussion

The primary reason for particle duplication is to optimize

reads for any arbitrary resolution. For scientific analysis

tools, all of the particles for any particular resolution can be

read by one linear read of a level-of-detail, without skipping

across the file. For LOD visualization, a block of particles

can be frustum culled at run-time to avoid reading the data
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from disk. If we do not duplicate particles across levels-of-

detail, there are two obvious choices of block organization

on disk that will lead to frequent striding (skipping) through

an LOD particle file. The first option would store the parti-

cles in contiguous high resolution blocks. To read the lowest

resolution block in this case, we would need to read a por-

tion of all of high resolution blocks (the particles in a level-

of-detail are not contiguous). Conversely, the second option

would store the particle data in a progressive format such

that a high resolution block is read by accumulating a por-

tion of every level-of-detail, i.e., the particles in a level are

contiguous but every block is scattered across the file.

In our empirical studies when block data is spread across

the LOD file, a multiple block read becomes the worst case

in many stride sizes, read sizes, and block sizes, which is

equivalent to reading the entire file. While this isn’t an is-

sue for small LOD hierarchies, it is an issue when the LOD

is multiple gigabytes or terabytes making many worst-case

reads take minutes. With particle duplication, we eliminate

fine grain striding and any read strides become block size or

greater. Therefore, a multi-block read for a fixed resolution

only has to touch one linear segment of the LOD file corre-

sponding to one level-of-detail rather than seeking through

entire file. See Figure 14 for an impact of block striding

within a level. We additionally use the particle duplication

between levels to simulate fine-grain levels in Section 4.2.1.

At this time, particle duplication is not a definitive solu-

tion and it requires further exploration due to the potential

write time improvement. In general, our algorithm does not

require duplication of particles, as it is primarily an LOD

read optimization and can be easily modified to remove par-

ticle duplication. Secondly, we are challenging the validity

of reading progressively stored data, therefore our claims are

going to be controversial. Finally, we could potentially elim-

inate particle duplication via parallel file system striping,

solid state storage, static file optimization [HPS09], and/or

using very large block sizes with few levels-of-detail to op-

timize stride sizes. Removing particle duplication would be

beneficial, as it would halve the storage size and write time

of the two largest LOD hierarchy cases (2N becomes N and

N becomes N/2) by reducing the size and write time of any

LOD storage to the highest resolution.

4.2. LOD Visual Continuity

In the sampling algorithm, every level-of-detail (LOD) and

block is a stratified random sample (StRS) of the original

data, but each level and block is also a subset of higher

resolution levels and blocks, i.e., levels are not completely

independent random samples. We preserve this subsetting

property ensure there is visual continuity while changing be-

tween LOD levels: particles do not pop in or out (“sparkle”)

on resolution changes. By transitivity, if A ⊂ B and B ⊂ C,

then A ⊂ C, which means that by moving from any LOD

level A to C, A will always be visually depicted in C. Fig-

ure 6 shows an abstract depiction of the visual continuity

between LOD levels.

Figure 6: An abstract depiction of LOD particle data under in-

creasing resolution with visual continuity. The particles in the lower

resolution data are always present in the higher resolution data.

This follows from the sampling algorithm such that each

block in the LOD structure is the combination (reduction) of

two or more higher resolution blocks. We create a lower res-

olution block through StRS on the higher resolution blocks

(randomly picking a particle from every k particles, or one

random sample from every stratum). Through the recursive

algorithm, a block at level L is the combination of two or

more blocks from level M where M > L. A lower resolution

block is created by randomly taking one out of every 2M−L

particles (the ordered list of particles by kd-tree sorting), as

seen in Figure 4 and 5.

4.2.1. Smooth Visual Continuity

We have added an additional optimization to the LOD vi-

sualization for smooth visual continuity between displayed

levels. If we directly switch resolutions between stored lev-

els, the new amount of particles would, at a minimum, al-

ways be half or double the number of visible particles creat-

ing a large visual discontinuity. We remove the popping by

smoothing the number of visible particles over time.

In the sampling algorithm and particle duplication, a low-

resolution block is created from the combined particles from

high-resolution blocks. Particles to create a low-resolution

block from high-resolution blocks are divided into two parti-

tions: particles that are selected (sampled) to go to the lower

resolution parent block and particles that are not (particles

that only exist in a higher resolutions). The higher resolution

particles, which are not filtered up the hierarchy to a lower

resolution, are written to storage in a randomly permuted or-

der.

During visualization and analysis, an LOD level can be

partially rendered to simulate finer-grain LOD levels. This is

done by rendering all of the particles that are duplicated in a

lower resolution level and incrementally adding or removing

particles from the permuted list of particles that only exist in

higher resolutions. Figure 7 shows the particle organization

of blocks on storage and the particle duplication between

low-resolution and high-resolution blocks.

5. Approximation Error Measurement

In the sampling algorithm, particles are sorted into spatial

blocks or strata. One random particle is acquired per stratum.
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2 3 B D

C 1 A 4

1 2 3 4

...

A B C D

...

Figure 7: An intermediate resolution between two stored levels can

be created by a partial block. The top node is a low-resolution block

created from the green particles sampled from two high-resolution

blocks. The blue particles are particles duplicated in a lower reso-

lution block (not shown). The red particles are the particles that are

only duplicated in higher resolution blocks. To simulate a finer-grain

LOD level, we render all of the blue particles and incrementally add

red particles.

The aggregate sample is representative of the whole popula-

tion and samples in a localized region may be representative

of the local area. While the aggregate sample and sample es-

timators may be a good representative of the whole data, the

problem is that a single sample can be a poor representative

a localized region.

There is a loss of transmitted information from the sim-

ulation to the cosmologist [CJ10] by sampling. The strati-

fied random sampling (StRS) introduces approximation er-

ror into the representative data. We define approximation er-

ror to be how accurately our sample data represents the orig-

inal data. This has always been the case in large-scale simu-

lations, as the storage bandwidth and capacity are not large

enough to accommodate and transmit all of the information

from the simulation to storage, usually losing precision or

time accuracy. [AHL∗10, JR07].

The way we are able to overcome some of the information

loss is that we measure and quantify information about the

original data, during the simulation, to augment the sample

data. The information is used to quantify the quality of the

sample data, measure the amount of introduced error com-

pared to the original data, and visualize this information.

This provides a data quality assurance as we directly query

the generated source data at run-time.

The measures that we utilize for MC3 are the local sta-

tistical properties on the particle fields (variables). The par-

ticle data contains position (x, y, z), velocity (vx, vy, vz),

and mass. We measure the population mean and variance

of the original data within each stratum. The mean and

variance are important measures because of their relation-

ship to signal-to-noise ratio and the coefficient of variation

[Coc77, Loh10]. These statistical properties are assigned to

the sample particle taken from each strata to represent the lo-

cal statistical properties of the original data. In Section 6.1,

we discuss the visualization of the error metrics.

The statistical metrics also give us a mechanism to sam-

ple more in high variance areas or where the local sample

mean does not mirror the local population mean, assuming

that the stored LOD hierarchy will not store highest resolu-

tion data. We have not fully tested this particular feature yet,

and it requires future testing because it allows the kd-tree

to grow unevenly and uses more storage bandwidth than a

static amount.

6. Streaming LOD Analysis and Visualization

To visualize our level-of-detail (LOD) MC3 data, we uti-

lize a multi-resolution visualization and analysis extension

to ParaView and VTK [AWD∗09]. We acknowledge that our

particle rendering may be considered primitive compared to

other visualization techniques [FSW09,HE03]. Nothing pre-

cludes us from integrating a more sophisticated rendering

method in the future.

Our primary goal was an end-to-end data management

system for direct scientific analysis of MC3 sample data. The

reason for this focus is that while qualitative interactive visu-

alization is an important tool for insight, the scientific work-

flow and discovery process is completed with quantitative

scientific analysis [AHP∗10]. This has been one of our main

motivating goals for storing the MC3 data in a raw form,

rather than being a “visualization optimized” form: the data

can be utilized directly in scientific visualization and analy-

sis tools without data transformation. For example, we can

reuse existing scientific analysis tools, including the cosmol-

ogists’ own tools, such as as histograms, thresholding, or

specific cosmology filters developed for MC3 like friends-

of-friends halo finding [WHA∗10] in ParaView and VTK.

6.1. Visualization of Local Approximation Error

By recording approximation error, each sample particle has

the local statistical properties of the original data. There are

two main ways that we have visually utilized this informa-

tion: highlighting areas that have high variance in the origi-

nal data and highlighting areas where the local sample mean

differs from the local population mean. In both these cases,

the visualizations are a mechanism to direct the cosmologist

to parts of the data that may be under-represented and not

accurate.

For the first case, we highlight areas that have high vari-

ance in low resolution data. This visualization directs the

cosmologist to potential interesting areas of the data set.

When viewing low-resolution LOD data, the cosmologist is

prompted zoom into the area by highlighted particles. This

is because the highlighting indicates there is a large spread

of values in higher resolution data. Figure 8 shows the iden-

tification of a halo (cluster of dark matter particles) in a low

density region, at low resolution, due to velocity variance

color highlighting.

In the second example, we compare the local sample mean
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Figure 8: A halo in a low density region is visually located in a

low resolution sample by velocity variance color highlighting. LOD

resolution increases left to right with zooming.

to the local population mean, which has been previously cal-

culated in-situ. If the two means differ significantly, we high-

light those areas to show that the sample estimation in a local

region may not be a good representative. As before, the cos-

mologist should zoom into a higher resolution sample before

doing any calculations on the data in that localized area.

7. Analysis and Comparison of Sample Data

We compare the accuracy of a low resolution MC3 sample

in statistical measures and data value variation across space

in the velocity field. Figure 9 shows several histograms of

the velocity components (top row) and the velocity compo-

nent variation across space (bottom row). The red line is a

32768 sample (0.19%) of a 2563 particle data and the black

line is the value of the original data. As we can see in the

histograms, the sample data almost exactly represents the

histogram of the velocity components (the two curves over-

lap each other). The velocity, as it varies across space, also

nearly matches the original data except in the velocity x com-

ponent, where it varies slightly more, compared to velocity

y and z.

Figure 9: Graphs showing a 32768 sample (red curve) of a 2563

MC3 particle data set (black curve). Both curves exist in all graphs;

they occlude each other. Top row is the histogram of the velocity

components (vx, vy, vz, left to right). Bottom row is the average value

of the velocity component across space (vx in x, vy in y, vz in z, left to

right). In both cases, the curves overlap each other showing that the

sample is a good approximation (the black occludes the red curve in

the top graphs, and vice-versa on the bottom graphs).

Secondly, we measure the spatial sampling accuracy by

using spatial feature finding and statistical measures on that

feature. In cosmological science, halos, a clustering of dark

matter particles, are an important feature in dark matter sim-

ulations. An important measure is the histogram of halo

masses, called the “halo mass function”. In Figure 10, we

show the comparison of running a halo finding algorithm

and the subsequent halo mass function on different sample

sizes of a 2563 particle data set. We scale the halo finding pa-

rameters based on the sample size. The smallest sample size,

0.19% of the data, is not able to replicate the mass function.

On the other hand, the samples of 1.6% and 12.5% are able

to approximate the full resolution mass function.

Figure 10: The halo mass function for different sample sizes of

2563 particles. The black curve is the original data. The red, green,

and blue curves are .19%, 1.6%, and 12.5% samples, respectively.

7.1. Discussion of General Applicability

Our sampling method is generally applicable to different

simulations with statistical estimators, variance, and other

statistical analyses. General scientific analysis already com-

monly uses sampling and statistical analysis. This work

brings some of that existing knowledge into computational

simulation and visualization. The number of samples that are

required for error constraints and guarantees is completely

data and variability dependent. A simple analogy is that a

constant field only requires one point to represent the entire

data set, while a complex function needs many more sample

points to have low variability estimators.

At this point for more complex analysis such as halo find-

ing, the applicability of sampling is data and analysis de-

pendent, on a case by case basis. For example, we tested

whether MC3 sampled data could be used for halo finding.

We determined that the input parameters needed to be scaled

by the size of the sample and found the appropriate sample

sizes through empirical testing. For other data sets and anal-

ysis, the same process would need to be performed to de-

termine applicability, analysis parameters, and sample sizes.

Though, it is a worthwhile point of future research to try to

determine if there is a method for pre-determining sample

sizes for guaranteed error constraints and whether that can

be can be generalized to error bounds for function recon-

struction and scientific analysis.

8. Resource Timings

A RoadRunner Universe MC3 20483 particle run generates 8

billion particles per time slice. A time slice is 309 GB total at
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36 bytes per particle. In a 512-way run, the per process files

are approximately 604 MB each. The data is stored from

the simulation on a Panasas file system [pan] connected to

Cerrillos, a hybrid 4 x AMD/4 x Cell supercomputer with 16

GB each, featuring IBM QS22 and LS11 blades similar to

RoadRunner. The nodes are connected via 4 x DDR Voltaire

Infiniband in a fat-tree topology.

In our implementation, only a block size (sample size) ex-

tra memory is required as the particles can be kd-tree sorted

in place with STL nth_element. On the processor reduction

phase, we use an optimization such that the particles are

sampled per processor before merging (reduction). Then, the

particles are gathered to the write processor for LOD block

storage. This requires only an extra block size of memory to

gather a sample block across 2d processors, where d is the

largest level gap in the across-processor gather hierarchy.

In the following, we time the creation for sampling and

storage of an LOD structure of 20483 MC3 particles. The

data sizes are from using our particle duplication in Section

4.1. Table 1 shows the different configurations using a 32768

sample size per block (~1.1 MB per block). The first row is

the original full resolution data storage write method from

MC3. The second row is data size for writing the full res-

olution complete LOD hierarchy. The third row is the data

size for writing the complete LOD hierarchy without the full

resolution data (half resolution maximum). Fourth through

eighth rows are the data size for writing the LOD hierarchy

with selected levels (skipping x number of levels in the out-

put). We can see that the largest impact for an LOD data size

is dependent on the highest resolution level.

write config size max res total data

original write 309 GB N N

full res LOD 618 GB N 2N

half res LOD 309 GB N/2 N

skip 1 level (1/4 max) 103 GB N/4 ~.333N

skip 2 levels (1/8 max) 44 GB N/8 ~.142N

skip 3 levels (1/4 max) 82 GB N/4 ~.265N

skip 4 levels (1/8 max) 39 GB N/8 ~.126N

skip 5 levels (1/64 max) 4.9 GB N/64 ~.016N

Table 1: Different data sizes for different LOD configurations with

a 32768 sample size per block with particle duplication per level

(see Section 4.1). The top row is the normal full resolution write of

the “cosmo” format without sampling and LOD storage.

Table 2 shows the amount of time savings for the cosmol-

ogist’s workflow between simulation and interactive anal-

ysis. This is assuming we differ from a traditional visual-

ization workflow, where the data is processed before visual-

ization (one extra read and write of the data is performed).

It takes 210s to write the data in its original full resolution

“cosmo” format from MC3 and 153s to read that same data,

both 512 way from the Panasas. Therefore, we have a sav-

ings of 364s (~6 minutes) per time slice between simula-

tion and analysis by performing the LOD encoding at sim-

ulation time. This is because we remove one extra read and

write of the data in the workflow by elimination of data post-

processing. Also with our method, the sample data is imme-

diately ready for interactive visualization after it is written to

disk, allowing for simulation monitoring.

original write full read workflow savings

210s / slice 153s / slice 364s / slice

Table 2: Original full resolution MC3 data read and write tim-

ings. “Workflow savings” is the time savings between simulation

and post-analysis per time slice through in-situ processing.

In Figure 11, we show the actual time taken to write the

data in different LOD configurations. The first bar shows the

original write time per time slice. The next two bars show

that encoding a full or half resolution LOD structure, with

particle duplication, level does not save any simulation time.

Though, there still is a total end-to-end time savings if you

consider the analysis lag time of 364s / slice (Table 2). Sam-

pling and writing the data into an LOD structure (3rd bar)

has an overhead of 51s (approximately 18s to 24s is due to

kd-tree sorting overhead of 2563 (16 million) particles per

processor).

Figure 11: Time taken to write sample and write the MC3 particle

data in-situ per time slice. The left-most bar is the original write

time. The other bars are LOD storage with particle duplication.

Actual simulation time savings comes from writing less

data, which can be seen in Figure 12. Beginning with the

4th bar from the left in Figure 12, we save 118 seconds (2

minutes) per time slice. In the case where we are only writ-

ing ~1.5% of the original simulation data, we save 192s (3.2

minutes) per time slice. The time taken is nearly correlated

by the amount of data written. Though, “skip 4 levels” takes

8 seconds longer than “skip 2 levels,” even though the for-

mer stores less data. This is probably due to system noise

and utilization, since Cerrillos is an actively used supercom-

puter and the Panasas file system is shared across several

other supercomputers.

In Figure 13, we can see the amount of additional time

slices that can be stored to increase time fidelity. If we sam-

ple the data at quarter resolution or less (assuming particle

duplication), we can expect to be able to add approximately

one to three additional time slices. This allows the cosmol-

ogists to make a trade-off between temporal and spatial fi-
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Figure 12: Simulation time savings per time slice in different LOD

configurations.

delity using the same I/O time, which does not preclude writ-

ing out full resolution slices. For example, if the simulation

normally writes 100 full resolution time steps, we can trade

half of those for a sampled version (for example, every other

full resolution time slice) to add between 100 to 200 addi-

tional time slices or potentially many more if using smaller

resolutions. The remaining 50 could then be converted to 20

full resolution LOD time slices. This would create a a mix of

full resolution LOD data and low resolution LOD data, with

200 to 300 time slices, in the same I/O time as before.

Figure 13: Ratio of of our LOD write method time compared to

the original write method time.

Finally, we measure the performance of I/O read times for

our LOD particle organization for different sample (block)

sizes in Figure 14. The peak read rate from the disk we used

is approximately 110 MB/s. In Section 4.2.1, we described

a method for partially using blocks for intermediate LOD

levels. As we can see, the larger block size (approximately

262 thousand samples or 8MB per block) has the best per-

formance for full and partial I/O reads.

9. Conclusion

We have presented a method for in-situ stratified random

sampling and level-of-detail storage for the RoadRunner

Figure 14: Read block (sample size) I/O times, which vary based

on partial read (striding) from a single mechanical disk. Peak

throughput on a linear read is approximately 110MB/s on this disk.

Universe MC3 cosmological simulation for interactive post-

analysis and visualization. We believe that this methodol-

ogy opens a new in-situ venue to enable large-scale scien-

tific analysis at extreme scales. This acts as a launching point

for many different points of visualization research to support

interactive post-analysis at exascale: enabling other large-

scale simulations, enabling different data types (regular and

irregular grids) and sampling methods, integration with com-

pression [BR09, EGM05, LI06] and quantization methods

[CMNR07, LHJ99, WGLS05], utilization of approximation

error in analysis operations and the propagation of error, in-

tegration into existing in-situ and co-processing frameworks

and/or using I/O function hooks, acquiring additional sta-

tistical and summary information of the original data, and

using sampling and dimensionality reduction on data axes

rather than only the spatial axes.

In particular for MC3, we need to investigate measur-

ing temporal error and ensuring temporal sample continu-

ity. This would be similar to LOD visual continuity, be-

cause halo tracking and merging over time are an impor-

tant research topic for the cosmologists. Also, we need to

verify the applicability of our sampling for n-point correla-

tion functions. Secondly, outlier information and visualiza-

tion is important for verification and debugging of simula-

tion codes [AHP∗10]. We would like to look into sampling

the data axes (variables) and biasing the sampling towards

saving outlier data. Finally, we would like to look into us-

ing compact summary information to generate particle data

at analysis time to increase the accuracy of halo finding for

low resolution data.
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Sampling and Level-of-Detail Construction Algo-

rithm Pseudo-code

What follows is the algorithm (pseudocode) to recursively create a single strati-
fied random sample of parallel particle data via a kd-tree per processing element
as an SPMD (MPI-model) program. This is not the full algorithm but the basis
for the full algorithm.

N = ‘‘total number of particles’’

S = ‘‘sample size’’ < N

# get local particles, sample the data

# with a fraction of the number of particles, and

# then gather the samples across all processors

p = get-local-particles()

gather(kd-tree-random-sample(p, S * |p| / N, 0))

# per-processor sampling function using a kd-tree.

# part is the particles, ss is the sample size,

# and d is the current kd-tree depth

function kd-tree-random-sample(part, ss, d):

# if the sample size is one, get a random sample

# from the kd-tree leaf (block/stratum)

if ss == 1:

return one-random-sample(part)

# else split the particle data into two halves

# and sample on each half, joining the samples

else:

left, right = median-sort(part, axis(d))

return append(kd-tree-sample(left, ss/2, d+1),

kd-tree-sample(right, ss/2, d+1))

In the following, we show the modification of the previous pseudocode to
provide the full algorithm and support level-of-detail (LOD) storage of the par-
ticles. The main differences are that the LOD levels are written to disk as
they are generated, the data can be written out in full resolution in the LOD
structure, and that the LOD structure is built and completed in parallel across
processors (assuming that each processor has a spatial block of particles, as is
in the case with MC3).

1



This code assumes particle duplication per level for fast linear reads, thus
every block or level has all of its particles without having to skip on disk to read
and gather particles across multiple levels. It is entirely possible to easily modify
the algorithm to remove the particle duplication per level and write particles
only once.

N = ‘‘total number of particles’’

S = ‘‘sample size’’ < N

# V is slightly different here in implementation

# V is a subset of integers

V = ‘‘set of LOD levels to store’’

F = ‘‘LOD level to store as full resolution’’ >= -1

# get local particles and sample the data

# generate the LOD tree per processor

p = get-local-particles()

sample = sample-and-lod(p, S, 0)

# reduce the LOD tree from the per processor LOD trees

for d from -1 to -log2(number-of-processors()) by -1:

# sibling is the opposite processor in a kd-tree

# ordering of processors in simulation space

sibling = get-opposite-sibling-rank(d)

if get-rank() > sibling:

send(sibling, sample)

break

else:

if d is in V:

sample =

sieve-and-store

(append(sample, receive(sibling)), d)

# per-processor sampling and LOD construction

# part is the particles, ss is the sample size,

# and d is the current kd-tree depth

function sample-and-lod(part, ss, d):

# write the full resolution data as an LOD level

# if it is enabled (not less than 0)

if d == F:

write-to-storage(part)

# if the sample size is one, acquire a random sample

# from the kd-tree leaf (block/stratum)

if ss == 1:

return one-random-sample(part)

# else split the particle data into two halves

# and build the LOD tree on both halves

2



else:

left, right = median-sort(part, axis(d))

if d < max(V):

sample = append(sample-and-lod(left, ss, d+1),

sample-and-lod(right, ss, d+1))

else:

sample = append(sample-and-lod(left, ss/2, d+1),

sample-and-lod(right, ss/2, d+1))

# if it an LOD level, filter the samples

if d is in V:

return sieve-and-store(sample, d)

# else return the blocks (samples) to the parent

else:

return sample

# build a random sample to pass to a parent block

# in the LOD tree and store this block (sample).

# there is a subtle nuance in that the particles

# that go to the parent are not randomly sampled

# from the entire pool, but one is sampled from

# every k sized partitions; this is to ensure that

# the one random particle per stratum holds at

# every level in the hierarchy

function sieve-and-store(sample, d):

# every k sequential particles in the list are

# from kd-tree siblings: randomly pick one of the

# k particles to go to the parent block where

# k = 2^(last stored LOD level - this LOD level)

k = 2^(get-last-stored-level(V, d) - d)

for i from 0 to S by k:

pick = random(k)

for j from 0 to k by 1:

if j == pick:

parent = append(parent, sample[i+j])

else:

children = append(children, sample[i+j])

# random permutation of the children

# is to support intermediate level rendering

# described in the paper

write-to-storage

(append(parent, random-permutation(children))

return parent
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